SAS to PySpark Migration Guide
Document Information
Version: 1.0
Last Updated: 2025-01-24
Classification: Internal Use
Owner: Data Engineering Team
__
1. Executive Summary
This guide provides comprehensive patterns and best practices for migrating SAS programs to PySpark on Databricks. It covers data step conversions, PROC transformations, macro translations, and testing strategies to ensure successful migrations.
__
2. Migration Overview
2.1 Conceptual Mapping
	SAS Concept
	PySpark Equivalent

	DATA Step
	DataFrame transformations

	PROC SQL
	Spark SQL / DataFrame API

	PROC SORT
	orderBy() / sort()

	PROC MEANS/SUMMARY
	groupBy().agg()

	PROC FREQ
	groupBy().count()

	PROC TRANSPOSE
	pivot() / unpivot()

	SAS Macros
	Python functions

	SAS Formats
	withColumn() + UDF

	SAS Libraries
	Unity Catalog schemas

	SAS Datasets
	Delta tables

2.2 Migration Approach
┌───┐
│ SAS TO PYSPARK MIGRATION FLOW │
├───┤
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ ASSESS │───▶│ CONVERT │───▶│ VALIDATE │───▶│ DEPLOY │ │
│ │ │ │ │ │ │ │ │ │
│ │ • Inventory │ │ • Auto-gen │ │ • Data │ │ • Deploy │ │
│ │ • Complexity│ │ • Manual │ │ comparison│ │ • Monitor │ │
│ │ • Priority │ │ refactor │ │ • Unit tests│ │ • Optimize │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │
└───┘

__
3. DATA Step Conversions
3.1 Basic DATA Step
/* SAS: Basic DATA step */
DATA work.customers_clean;
 SET source.customers;
 WHERE status = 'ACTIVE';
 customer_name = UPCASE(STRIP(customer_name));
 IF revenue > 10000 THEN segment = 'HIGH';
 ELSE IF revenue > 1000 THEN segment = 'MEDIUM';
 ELSE segment = 'LOW';
 created_date = TODAY();
RUN;

PySpark equivalent
from pyspark.sql import functions as F

customers_clean = (
 spark.table("source.customers")
 .filter(F.col("status") == "ACTIVE")
 .withColumn("customer_name", F.upper(F.trim(F.col("customer_name"))))
 .withColumn("segment",
 F.when(F.col("revenue") > 10000, "HIGH")
 .when(F.col("revenue") > 1000, "MEDIUM")
 .otherwise("LOW")
)
 .withColumn("created_date", F.current_date())
)

customers_clean.write.saveAsTable("work.customers_clean")

3.2 SET with Multiple Datasets (Append)
/* SAS: Append datasets */
DATA work.all_transactions;
 SET source.transactions_2024
 source.transactions_2025;
RUN;

PySpark equivalent
transactions_2024 = spark.table("source.transactions_2024")
transactions_2025 = spark.table("source.transactions_2025")

all_transactions = transactions_2024.unionByName(transactions_2025)
all_transactions.write.saveAsTable("work.all_transactions")

3.3 MERGE (Join)
/* SAS: MERGE with BY */
PROC SORT DATA=source.orders; BY customer_id; RUN;
PROC SORT DATA=source.customers; BY customer_id; RUN;

DATA work.order_details;
 MERGE source.orders (IN=a)
 source.customers (IN=b);
 BY customer_id;
 IF a AND b; /* Inner join */
RUN;

PySpark equivalent
orders = spark.table("source.orders")
customers = spark.table("source.customers")

order_details = orders.join(
 customers,
 on="customer_id",
 how="inner" # or "left", "right", "outer"
)

order_details.write.saveAsTable("work.order_details")

3.4 RETAIN and LAG
/* SAS: RETAIN for running total */
DATA work.running_totals;
 SET source.transactions;
 BY customer_id;
 RETAIN running_total 0;
 IF FIRST.customer_id THEN running_total = 0;
 running_total = running_total + amount;
RUN;

/* SAS: LAG function */
DATA work.with_prev;
 SET source.transactions;
 prev_amount = LAG(amount);
 change = amount - prev_amount;
RUN;

PySpark equivalent - Running total
from pyspark.sql import Window

window_spec = (Window
 .partitionBy("customer_id")
 .orderBy("transaction_date")
 .rowsBetween(Window.unboundedPreceding, Window.currentRow)
)

running_totals = (
 spark.table("source.transactions")
 .withColumn("running_total", F.sum("amount").over(window_spec))
)

PySpark equivalent - LAG
window_spec = Window.orderBy("transaction_date")

with_prev = (
 spark.table("source.transactions")
 .withColumn("prev_amount", F.lag("amount", 1).over(window_spec))
 .withColumn("change", F.col("amount") - F.col("prev_amount"))
)

3.5 First/Last by Group
/* SAS: FIRST. and LAST. */
DATA work.first_last;
 SET source.transactions;
 BY customer_id order_date;
 IF FIRST.customer_id THEN first_flag = 1;
 ELSE first_flag = 0;
 IF LAST.customer_id THEN last_flag = 1;
 ELSE last_flag = 0;
RUN;

PySpark equivalent
window_spec = Window.partitionBy("customer_id").orderBy("order_date")

first_last = (
 spark.table("source.transactions")
 .withColumn("row_num", F.row_number().over(window_spec))
 .withColumn("row_count", F.count("*").over(Window.partitionBy("customer_id")))
 .withColumn("first_flag", F.when(F.col("row_num") == 1, 1).otherwise(0))
 .withColumn("last_flag", F.when(F.col("row_num") == F.col("row_count"), 1).otherwise(0))
 .drop("row_num", "row_count")
)

3.6 OUTPUT to Multiple Datasets
/* SAS: OUTPUT to multiple datasets */
DATA work.high_value work.low_value;
 SET source.customers;
 IF revenue >= 10000 THEN OUTPUT work.high_value;
 ELSE OUTPUT work.low_value;
RUN;

PySpark equivalent
customers = spark.table("source.customers")

high_value = customers.filter(F.col("revenue") >= 10000)
low_value = customers.filter(F.col("revenue") < 10000)

high_value.write.saveAsTable("work.high_value")
low_value.write.saveAsTable("work.low_value")

__
4. PROC Conversions
4.1 PROC SQL
/* SAS: PROC SQL */
PROC SQL;
 CREATE TABLE work.summary AS
 SELECT
 customer_segment,
 COUNT(*) AS customer_count,
 SUM(revenue) AS total_revenue,
 AVG(revenue) AS avg_revenue
 FROM source.customers
 WHERE status = 'ACTIVE'
 GROUP BY customer_segment
 HAVING COUNT(*) >= 10
 ORDER BY total_revenue DESC;
QUIT;

PySpark - SQL
summary = spark.sql("""
 SELECT
 customer_segment,
 COUNT(*) AS customer_count,
 SUM(revenue) AS total_revenue,
 AVG(revenue) AS avg_revenue
 FROM source.customers
 WHERE status = 'ACTIVE'
 GROUP BY customer_segment
 HAVING COUNT(*) >= 10
 ORDER BY total_revenue DESC
""")

PySpark - DataFrame API
summary = (
 spark.table("source.customers")
 .filter(F.col("status") == "ACTIVE")
 .groupBy("customer_segment")
 .agg(
 F.count("*").alias("customer_count"),
 F.sum("revenue").alias("total_revenue"),
 F.avg("revenue").alias("avg_revenue")
)
 .filter(F.col("customer_count") >= 10)
 .orderBy(F.col("total_revenue").desc())
)

4.2 PROC SORT
/* SAS: PROC SORT with NODUPKEY */
PROC SORT DATA=source.transactions OUT=work.sorted_unique NODUPKEY;
 BY customer_id transaction_date DESCENDING amount;
RUN;

PySpark equivalent
sorted_unique = (
 spark.table("source.transactions")
 .orderBy(
 F.col("customer_id").asc(),
 F.col("transaction_date").asc(),
 F.col("amount").desc()
)
 .dropDuplicates(["customer_id", "transaction_date"])
)

4.3 PROC MEANS/SUMMARY
/* SAS: PROC MEANS */
PROC MEANS DATA=source.transactions N SUM MEAN MIN MAX STD;
 CLASS customer_segment;
 VAR amount quantity;
 OUTPUT OUT=work.summary_stats
 N=n_amount n_quantity
 SUM=sum_amount sum_quantity
 MEAN=mean_amount mean_quantity;
RUN;

PySpark equivalent
summary_stats = (
 spark.table("source.transactions")
 .groupBy("customer_segment")
 .agg(
 # Amount statistics
 F.count("amount").alias("n_amount"),
 F.sum("amount").alias("sum_amount"),
 F.avg("amount").alias("mean_amount"),
 F.min("amount").alias("min_amount"),
 F.max("amount").alias("max_amount"),
 F.stddev("amount").alias("std_amount"),
 # Quantity statistics
 F.count("quantity").alias("n_quantity"),
 F.sum("quantity").alias("sum_quantity"),
 F.avg("quantity").alias("mean_quantity")
)
)

4.4 PROC FREQ
/* SAS: PROC FREQ */
PROC FREQ DATA=source.customers;
 TABLES status*segment / NOROW NOCOL NOPERCENT;
 OUTPUT OUT=work.freq_table;
RUN;

PySpark equivalent - Simple frequency
freq_table = (
 spark.table("source.customers")
 .groupBy("status", "segment")
 .agg(F.count("*").alias("count"))
 .orderBy("status", "segment")
)

Cross-tabulation (pivot)
cross_tab = (
 spark.table("source.customers")
 .groupBy("status")
 .pivot("segment")
 .agg(F.count("*"))
)

4.5 PROC TRANSPOSE
/* SAS: PROC TRANSPOSE - Long to Wide */
PROC TRANSPOSE DATA=source.metrics OUT=work.wide_metrics PREFIX=month_;
 BY customer_id;
 ID month;
 VAR revenue;
RUN;

PySpark equivalent - Pivot (Long to Wide)
wide_metrics = (
 spark.table("source.metrics")
 .groupBy("customer_id")
 .pivot("month")
 .agg(F.first("revenue"))
)

PySpark equivalent - Unpivot (Wide to Long)
Using stack function
long_metrics = (
 spark.table("source.wide_metrics")
 .select(
 "customer_id",
 F.expr("stack(3, 'jan', jan_revenue, 'feb', feb_revenue, 'mar', mar_revenue) as (month, revenue)")
)
)

__
5. SAS Functions to PySpark
5.1 String Functions
/* SAS String Functions */
DATA work.string_demo;
 SET source.data;
 /* String manipulation */
 upper_name = UPCASE(name);
 lower_name = LOWCASE(name);
 proper_name = PROPCASE(name);
 trimmed = STRIP(name);
 left_trim = LEFT(name);
 right_trim = RIGHT(name);

 /* Substring */
 first_3 = SUBSTR(name, 1, 3);
 last_3 = SUBSTR(name, LENGTH(name)-2, 3);

 /* Concatenation */
 full_name = CATX(' ', first_name, last_name);

 /* Search */
 pos = INDEX(name, 'Smith');
 contains_smith = (INDEX(name, 'Smith') > 0);

 /* Replace */
 replaced = TRANWRD(name, 'old', 'new');

 /* Length */
 name_length = LENGTH(name);
RUN;

PySpark equivalent
string_demo = (
 spark.table("source.data")
 # String manipulation
 .withColumn("upper_name", F.upper(F.col("name")))
 .withColumn("lower_name", F.lower(F.col("name")))
 .withColumn("proper_name", F.initcap(F.col("name")))
 .withColumn("trimmed", F.trim(F.col("name")))
 .withColumn("left_trim", F.ltrim(F.col("name")))
 .withColumn("right_trim", F.rtrim(F.col("name")))

 # Substring
 .withColumn("first_3", F.substring(F.col("name"), 1, 3))
 .withColumn("last_3", F.substring(F.col("name"), -3, 3))

 # Concatenation
 .withColumn("full_name", F.concat_ws(" ", "first_name", "last_name"))

 # Search
 .withColumn("pos", F.instr(F.col("name"), "Smith"))
 .withColumn("contains_smith", F.col("name").contains("Smith"))

 # Replace
 .withColumn("replaced", F.regexp_replace(F.col("name"), "old", "new"))

 # Length
 .withColumn("name_length", F.length(F.col("name")))
)

5.2 Date Functions
/* SAS Date Functions */
DATA work.date_demo;
 SET source.data;
 /* Current date/time */
 today_date = TODAY();
 now_datetime = DATETIME();

 /* Date parts */
 year_val = YEAR(order_date);
 month_val = MONTH(order_date);
 day_val = DAY(order_date);
 weekday_val = WEEKDAY(order_date);
 qtr_val = QTR(order_date);

 /* Date arithmetic */
 next_week = INTNX('WEEK', order_date, 1);
 days_diff = INTCK('DAY', start_date, end_date);
 months_diff = INTCK('MONTH', start_date, end_date);

 /* Date formatting */
 date_str = PUT(order_date, DATE9.);
 date_from_str = INPUT('24JAN2025', DATE9.);
RUN;

PySpark equivalent
date_demo = (
 spark.table("source.data")
 # Current date/time
 .withColumn("today_date", F.current_date())
 .withColumn("now_datetime", F.current_timestamp())

 # Date parts
 .withColumn("year_val", F.year("order_date"))
 .withColumn("month_val", F.month("order_date"))
 .withColumn("day_val", F.dayofmonth("order_date"))
 .withColumn("weekday_val", F.dayofweek("order_date"))
 .withColumn("qtr_val", F.quarter("order_date"))

 # Date arithmetic
 .withColumn("next_week", F.date_add("order_date", 7))
 .withColumn("days_diff", F.datediff("end_date", "start_date"))
 .withColumn("months_diff", F.months_between("end_date", "start_date"))

 # Date formatting
 .withColumn("date_str", F.date_format("order_date", "ddMMMyyyy"))
 .withColumn("date_from_str", F.to_date(F.lit("24JAN2025"), "ddMMMyyyy"))
)

5.3 Numeric Functions
/* SAS Numeric Functions */
DATA work.numeric_demo;
 SET source.data;
 rounded = ROUND(amount, 0.01);
 ceiling_val = CEIL(amount);
 floor_val = FLOOR(amount);
 abs_val = ABS(amount);
 mod_val = MOD(amount, 10);
 log_val = LOG(amount);
 exp_val = EXP(rate);
 power_val = amount**2;
 sqrt_val = SQRT(amount);
RUN;

PySpark equivalent
numeric_demo = (
 spark.table("source.data")
 .withColumn("rounded", F.round("amount", 2))
 .withColumn("ceiling_val", F.ceil("amount"))
 .withColumn("floor_val", F.floor("amount"))
 .withColumn("abs_val", F.abs("amount"))
 .withColumn("mod_val", F.col("amount") % 10)
 .withColumn("log_val", F.log("amount"))
 .withColumn("exp_val", F.exp("rate"))
 .withColumn("power_val", F.pow("amount", 2))
 .withColumn("sqrt_val", F.sqrt("amount"))
)

__
6. SAS Macro to Python Function
6.1 Simple Macro
/* SAS Macro */
%MACRO process_table(input_table, output_table, filter_status);
 DATA &output_table;
 SET &input_table;
 WHERE status = "&filter_status";
 processed_date = TODAY();
 RUN;
%MEND process_table;

/* Call macro */
%process_table(source.customers, work.active_customers, ACTIVE);

Python function equivalent
def process_table(input_table: str, output_table: str, filter_status: str):
 """Process table with status filter."""
 result = (
 spark.table(input_table)
 .filter(F.col("status") == filter_status)
 .withColumn("processed_date", F.current_date())
)
 result.write.mode("overwrite").saveAsTable(output_table)
 return result

Call function
process_table("source.customers", "work.active_customers", "ACTIVE")

6.2 Complex Macro with Loops
/* SAS Macro with Loop */
%MACRO process_all_months(year);
 %DO month = 1 %TO 12;
 %LET month_str = %SYSFUNC(PUTN(&month, Z2.));

 PROC SQL;
 CREATE TABLE work.data_&year._&month_str AS
 SELECT *
 FROM source.transactions
 WHERE YEAR(transaction_date) = &year
 AND MONTH(transaction_date) = &month;
 QUIT;
 %END;
%MEND;

%process_all_months(2025);

Python function equivalent
def process_all_months(year: int):
 """Process data for all months in a year."""
 results = {}

 for month in range(1, 13):
 month_str = f"{month:02d}"
 table_name = f"work.data_{year}_{month_str}"

 result = (
 spark.table("source.transactions")
 .filter(
 (F.year("transaction_date") == year) &
 (F.month("transaction_date") == month)
)
)

 result.write.mode("overwrite").saveAsTable(table_name)
 results[table_name] = result.count()

 return results

Call function
monthly_counts = process_all_months(2025)

6.3 Parameterized Pipeline
Comprehensive pipeline function (replacing SAS macro programs)
from dataclasses import dataclass
from typing import List, Optional

@dataclass
class PipelineConfig:
 input_table: str
 output_table: str
 filter_conditions: Optional[dict] = None
 group_columns: Optional[List[str]] = None
 agg_columns: Optional[List[str]] = None

def run_pipeline(config: PipelineConfig) -> DataFrame:
 """
 Flexible data processing pipeline.
 Equivalent to parameterized SAS macro.
 """
 # Read input
 df = spark.table(config.input_table)

 # Apply filters
 if config.filter_conditions:
 for column, value in config.filter_conditions.items():
 df = df.filter(F.col(column) == value)

 # Apply aggregations
 if config.group_columns and config.agg_columns:
 agg_exprs = [
 F.sum(col).alias(f"sum_{col}") for col in config.agg_columns
] + [
 F.count(col).alias(f"count_{col}") for col in config.agg_columns
]

 df = df.groupBy(*config.group_columns).agg(*agg_exprs)

 # Write output
 df.write.mode("overwrite").saveAsTable(config.output_table)

 return df

Usage
config = PipelineConfig(
 input_table="source.transactions",
 output_table="work.summary",
 filter_conditions={"status": "COMPLETED"},
 group_columns=["customer_id", "product_category"],
 agg_columns=["amount", "quantity"]
)

result = run_pipeline(config)

__
7. Data Validation and Reconciliation
7.1 Row Count Comparison
def compare_row_counts(sas_count: int, spark_table: str) -> dict:
 """Compare row counts between SAS and Spark outputs."""
 spark_count = spark.table(spark_table).count()

 return {
 "sas_count": sas_count,
 "spark_count": spark_count,
 "difference": sas_count - spark_count,
 "match": sas_count == spark_count
 }

7.2 Column-Level Validation
def validate_columns(sas_stats: dict, spark_table: str) -> dict:
 """
 Validate column statistics match between SAS and Spark.

 Args:
 sas_stats: Dictionary with SAS PROC MEANS output
 spark_table: Spark table name
 """
 spark_df = spark.table(spark_table)

 # Calculate Spark statistics
 spark_stats = spark_df.agg(
 F.count("*").alias("count"),
 F.sum("amount").alias("sum_amount"),
 F.avg("amount").alias("mean_amount"),
 F.min("amount").alias("min_amount"),
 F.max("amount").alias("max_amount")
).collect()[0]

 # Compare
 results = {}
 for stat_name in ["count", "sum_amount", "mean_amount"]:
 sas_val = sas_stats.get(stat_name, 0)
 spark_val = spark_stats[stat_name]
 diff_pct = abs(sas_val - spark_val) / sas_val * 100 if sas_val != 0 else 0

 results[stat_name] = {
 "sas": sas_val,
 "spark": spark_val,
 "diff_pct": round(diff_pct, 4),
 "match": diff_pct < 0.01 # 0.01% tolerance
 }

 return results

7.3 Full Data Comparison
def compare_datasets(sas_export_path: str, spark_table: str, key_columns: List[str]) -> DataFrame:
 """
 Compare SAS exported data with Spark output.
 Returns DataFrame with differences.
 """
 # Read SAS export (assuming CSV/Parquet export)
 sas_df = spark.read.parquet(sas_export_path)
 spark_df = spark.table(spark_table)

 # Find differences
 # Records in SAS but not in Spark
 sas_only = sas_df.join(spark_df, key_columns, "left_anti")

 # Records in Spark but not in SAS
 spark_only = spark_df.join(sas_df, key_columns, "left_anti")

 # Records with value differences
 joined = sas_df.alias("sas").join(
 spark_df.alias("spark"),
 key_columns,
 "inner"
)

 # Compare non-key columns
 value_columns = [c for c in sas_df.columns if c not in key_columns]
 diff_conditions = [
 (F.col(f"sas.{c}") != F.col(f"spark.{c}")) |
 (F.col(f"sas.{c}").isNull() != F.col(f"spark.{c}").isNull())
 for c in value_columns
]

 from functools import reduce
 value_diffs = joined.filter(reduce(lambda a, b: a | b, diff_conditions))

 return {
 "sas_only_count": sas_only.count(),
 "spark_only_count": spark_only.count(),
 "value_diff_count": value_diffs.count(),
 "sas_only": sas_only,
 "spark_only": spark_only,
 "value_diffs": value_diffs
 }

__
8. Common Migration Patterns
8.1 Lookup Table Pattern
/* SAS: Format-based lookup */
PROC FORMAT;
 VALUE $region_fmt
 'NY' = 'Northeast'
 'CA' = 'West'
 'TX' = 'South'
 OTHER = 'Other';
RUN;

DATA work.with_region;
 SET source.customers;
 region_name = PUT(state, $region_fmt.);
RUN;

PySpark equivalent - Using CASE WHEN
with_region = (
 spark.table("source.customers")
 .withColumn("region_name",
 F.when(F.col("state") == "NY", "Northeast")
 .when(F.col("state") == "CA", "West")
 .when(F.col("state") == "TX", "South")
 .otherwise("Other")
)
)

PySpark equivalent - Using lookup table join
region_lookup = spark.createDataFrame([
 ("NY", "Northeast"),
 ("CA", "West"),
 ("TX", "South"),
], ["state", "region_name"])

with_region = (
 spark.table("source.customers")
 .join(F.broadcast(region_lookup), "state", "left")
 .withColumn("region_name",
 F.coalesce(F.col("region_name"), F.lit("Other"))
)
)

8.2 Array Processing
/* SAS: Array processing */
DATA work.quarterly;
 SET source.monthly;
 ARRAY months{12} jan feb mar apr may jun jul aug sep oct nov dec;
 ARRAY quarters{4} q1 q2 q3 q4;

 DO i = 1 TO 4;
 quarters{i} = SUM(OF months{(i-1)*3+1} - months{i*3});
 END;
 DROP i;
RUN;

PySpark equivalent
quarterly = (
 spark.table("source.monthly")
 .withColumn("q1", F.col("jan") + F.col("feb") + F.col("mar"))
 .withColumn("q2", F.col("apr") + F.col("may") + F.col("jun"))
 .withColumn("q3", F.col("jul") + F.col("aug") + F.col("sep"))
 .withColumn("q4", F.col("oct") + F.col("nov") + F.col("dec"))
)

Dynamic version
def sum_columns(df, output_col, *input_cols):
 return df.withColumn(output_col, sum(F.col(c) for c in input_cols))

months = ["jan", "feb", "mar", "apr", "may", "jun",
 "jul", "aug", "sep", "oct", "nov", "dec"]

quarterly = spark.table("source.monthly")
for q in range(4):
 quarter_months = months[q*3:(q+1)*3]
 quarterly = sum_columns(quarterly, f"q{q+1}", *quarter_months)

__
9. Migration Checklist
9.1 Pre-Migration
[] Inventory all SAS programs to migrate
[] Assess complexity and dependencies
[] Document data sources and outputs
[] Identify SAS-specific features requiring special handling
[] Set up Databricks workspace and Unity Catalog
9.2 During Migration
[] Convert DATA steps to DataFrame transformations
[] Convert PROCs to equivalent PySpark operations
[] Convert macros to Python functions
[] Handle date/numeric formats
[] Implement error handling
9.3 Post-Migration
[] Run data reconciliation tests
[] Compare execution performance
[] Document any differences in results
[] Update operational procedures
[] Train users on new platform
__
Document Control:
Version: 1.0
Created: 2025-01-24
Last Review: 2025-01-24
Next Review: 2025-04-24

